TSC2 epigenetic defect in primary LAM cells. Evidence of an anchorage-independent survival

نویسندگان

  • Elena Lesma
  • Silvia Ancona
  • Silvia M Sirchia
  • Emanuela Orpianesi
  • Vera Grande
  • Patrizia Colapietro
  • Eloisa Chiaramonte
  • Anna Maria Di Giulio
  • Alfredo Gorio
چکیده

Tuberous sclerosis complex (TSC) is caused by mutations in TSC1 or TSC2 genes. Lymphangioleiomyomatosis (LAM) can be sporadic or associated with TSC and is characterized by widespread pulmonary proliferation of abnormal α-smooth muscle (ASM)-like cells. We investigated the features of ASM cells isolated from chylous thorax of a patient affected by LAM associated with TSC, named LAM/TSC cells, bearing a germline TSC2 mutation and an epigenetic defect causing the absence of tuberin. Proliferation of LAM/TSC cells is epidermal growth factor (EGF)-dependent and blockade of EGF receptor causes cell death as we previously showed in cells lacking tuberin. LAM/TSC cells spontaneously detach probably for the inactivation of the focal adhesion kinase (FAK)/Akt/mTOR pathway and display the ability to survive independently from adhesion. Non-adherent LAM/TSC cells show an extremely low proliferation rate consistent with tumour stem-cell characteristics. Moreover, LAM/TSC cells bear characteristics of stemness and secrete high amount of interleukin (IL)-6 and IL-8. Anti-EGF receptor antibodies and rapamycin affect proliferation and viability of non-adherent cells. In conclusion, the understanding of LAM/TSC cell features is important in the assessment of cell invasiveness in LAM and TSC and should provide a useful model to test therapeutic approaches aimed at controlling their migratory ability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Oncogenic effects of urotensin-II in cells lacking tuberous sclerosis complex-2

Lymphangioleiomyomatosis (LAM) is a destructive lung disease that can arise sporadically or in adults suffering from the tumor syndrome tuberous sclerosis complex (TSC). Microscopic tumors ('LAM nodules') in the lung interstitium arise from lymphatic invasion and metastasis. These consist of smooth muscle-like cells (LAM cells) that exhibit markers of neural crest differentiation and loss of th...

متن کامل

Modulation of cell migration and invasiveness by tumor suppressor TSC2 in lymphangioleiomyomatosis.

The loss of TSC2 function is associated with the pathobiology of lymphangioleiomyomatosis (LAM), which is characterized by the abnormal proliferation, migration, and differentiation of smooth muscle-like cells within the lungs. Although the etiology of LAM remains unknown, clinical and genetic evidence provides support for the neoplastic nature of LAM. The goal of this study was to determine th...

متن کامل

Evidence for Epigenetic Changes in the Estrogen Receptor Alpha Promoter in Lymphangioleiomyomatosis (LAM)

Lymphangioleiomyomatosis (LAM) is a rare but often fatal disease, characterized by the abnormal proliferation of smooth muscle cells of the lung. LAM occurs almost exclusively in women and its pathology correlates with mutations in the tuberous sclerosis complex 2 (TSC2) gene and expression of the hormone estrogen. One of the hallmarks of LAM lesions is the anomalous expression of the intracell...

متن کامل

Proapoptotic protein Bim attenuates estrogen-enhanced survival in lymphangioleiomyomatosis.

Lymphangioleiomyomatosis (LAM) is a progressive lung disease that primarily affects young women. Genetic evidence suggests that LAM cells bearing TSC2 mutations migrate to the lungs, proliferate, and cause cystic remodeling. The female predominance indicates that estrogen plays a critical role in LAM pathogenesis, and we have proposed that estrogen promotes LAM cell metastasis by inhibition of ...

متن کامل

Rapamycin-induced miR-21 promotes mitochondrial homeostasis and adaptation in mTORC1 activated cells

mTORC1 hyperactivation drives the multi-organ hamartomatous disease tuberous sclerosis complex (TSC). Rapamycin inhibits mTORC1, inducing partial tumor responses; however, the tumors regrow following treatment cessation. We discovered that the oncogenic miRNA, miR-21, is increased in Tsc2-deficient cells and, surprisingly, further increased by rapamycin. To determine the impact of miR-21 in TSC...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2014